Chem. Ber. 110, 3430 - 3437 (1977)

Reaktionen koordinierter Liganden, III¹⁾

Synthese von Heteroatom-Chelatring-Komplexen mit Hilfe des Lithiumphosphido-Komplexes *cis*-Mo(CO)₄(Me₂PLi)₂

Othmar Stelzer* und Eugen Unger

Lehrstuhl B für Anorganische Chemie der Technischen Universität Braunschweig, Pockelsstr. 4, D-3300 Braunschweig, und

Victor Wray

Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg, D-3300 Braunschweig-Stöckheim

Eingegangen am 29. Dezember 1976

Das durch Deprotonierung von *cis*-Tetracarbonylbis(dimethylphosphin)molybdän(0) zugängliche Dilithiumsalz *cis*-Mo(CO)₄(Me₂PLi)₂ (1) reagiert mit Dibrommethylstibin bzw. Dichlormethylbismutin unter Bildung der ungewöhnlichen Komplexverbindungen (CO)₄Mo(PMe₂ - SbMe -SbMe - PMe₂) (4) und (CO)₄Mo(PMe₂ - BiMe - BiMe - PMe₂) (5). Umsetzung von 1 mit *tert*-Butyldichlorphosphin liefert in geringer Ausbeute den Komplex eines Triphosphins, (CO)₄-Mo(PMe₂ - PBu^t - PMe₂) (6). Während 1 mit Dichlordimethylsilan nur polymere Produkte uneinheitlicher Zusammensetzung liefert, entstehen mit Bis(cyclopentadienyl)titan- bzw. -zirconiumdichlorid oder 1,2-Dichlor-1,1,2,2-tetramethyldisilan die erwarteten Chelatringsysteme (CO)₄Mo(PMe₂ - Cp₂E^{IVb} - PMe₂) (E^{IVb} = Ti, Zr) (8, 9) bzw. (CO)₄Mo(PMe₂ - SiMe₂ - SiMe₂ -PMe₂) (7) in guten Ausbeuten. Die Struktur der Verbindungen wird auf der Basis ihrer Spektren diskutiert.

Reactions of Coordinated Ligands, III¹⁾

Synthesis of Heteroatom Chelate Complexes via the Lithium Phosphido Complex cis-Mo(CO)₄(Me₂PLi)₂

The dilithium salt cis-Mo(CO)₄(Me₂PLi)₂ (1), obtained by deprotonation of cis-tetracarbonylbis(dimethylphosphine)molybdenum(0), reacts with dibromomethylstibine or dichloromethylbismutine to give the unusual complexes (CO)₄Mo(PMe₂-SbMe-SbMe-PMe₂) (4) and (CO)₄Mo(PMe₂-BiMe-BiMe-PMe₂) (5), respectively. Reaction of 1 with tert-butyldichlorophosphine affords in low yield a complex of a triphosphine, cis-Mo(CO)₄(PMe₂-PBu^t-PMe₂) (6). While with dichlorodimethylsilane I affords only polymeric products of variable composition, with bis(cyclopentadienyl)titanium- or -zirconium dichloride and 1,2-dichloro-1,1,2,2-tetramethyldisilane the expected chelate complexes (CO)₄Mo(PMe₂-Cp₂E^{IVh}-PMe₂) (E^{IVh} = Ti, Zr) (8, 9) or (CO)₄Mo(PMe₂-SiMe₂-SiMe₂-PMe₂) (7), respectively, are obtained in good yields. The structure of these compounds is dicussed on the basis of their spectra.

Die Reaktion von Dichlormethylphosphin und -arsin mit dem Lithiumphosphido-Komplex cis-Mo(CO)₄(Me₂PLi)₂ (1) lieferte überraschenderweise anstelle der erwarteten

¹⁾ II. Mitteil.: O. Stelzer und E. Unger, Chem. Ber. 108, 2232 (1975); J. Organomet. Chem. 85, C 33 (1975).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1977

Komplexe des Triphosphins $(Me_2P)_2PMe$ bzw. Diphosphinoarsins $(Me_2P)_2AsMe$ die Chelatringsysteme 2¹) und 3¹) des bislang unbekannten Tetraphosphins $Me_2P - PMe - PMe_2$ bzw. 1,2-Diphosphinodiarsins $Me_2P - AsMe - AsMe - PMe_2$. Der Aufbau dieser Ligandensysteme läßt sich durch einen partiellen Halogen-Metall-Austausch²) in Zwischenprodukten des Typs $Mo(CO)_4(Me_2P - E^VMeCl)_2$ unter Bildung von $Mo(CO)_4(Me_2P - E^VMeCl)(Me_2P - E^VMeLi)$ und anschließende Lithiumchlorid-Eliminierung plausibel machen.

Es schien uns daher interessant, zu untersuchen, ob die Umsetzung von 1 mit anderen geminalen Organoelementdihalogeniden X_2ER_n in ähnlicher Weise wie oben berichtet¹⁾ zu Chelat-Fünfringsystemen zweizähniger Liganden des Typs $Me_2P-ER_n-ER_n-PMe_2$ führt.

1. Umsetzung von 1 mit Organoelementdihalogeniden

Der Lithiumphosphido-Komplex 1 reagiert mit Dibrommethylstibin³⁾ bzw. Dichlormethylbismutin⁴⁾ analog, wie für Dichlormethylphosphin und -arsin beschrieben¹⁾. Man erhält Komplexe des 1,2-Diphosphinodistibins bzw. -dibismutins, $Me_2P - SbMe - SbMe - PMe_2$ bzw. $Me_2P - BiMe - BiMe - PMe_2$. Setzt man 1 dagegen mit *tert*-Butyldichlorphosphin⁵⁾ um, so kann der Komplex 6 des Triphosphins (Me_2P)₂PBu^t isoliert werden.

Die in den Komplexen 4 und 5 gebundenen 1,2-Diphosphinoderivate des Distibins und Dibismutins ergänzen die Serie $Me_2P - E^{V}Me - E^{V}Me - PMe_2$ ($E^{V} = N, P, As$, Sb, Bi) ungewöhnlicher Ligandensysteme, die durch Reaktionen in der Koordinationssphäre von Komplexen des Typs *cis*-Mo(CO)₄L₂ aufgebaut werden konnten^{1.6}.

Die Bildung des Triphosphinkomplexes 6 ist wohl auf den sterischen Effekt der *tert*-Butylgruppe zurückzuführen, der die Bildung des Tetraphosphins $Me_2P - PBu' - PBu' - PBu' - PMe_2$ unterdrückt. Für Triphosphine des Typs $R_2P - PR - PR_2^{2, 7, 8}$ sowie Komplexe⁹ dieser Liganden existieren bisher nur wenige Beispiele in der Literatur.

Die Umsetzung von 1 mit Dichlordimethylsilan sollte in Analogie zu den vorstehenden Ergebnissen Komplexe der Silylphosphine $Me_2P - SiMe_2 - PMe_2$ oder (unter Halogen-Metall-Austausch) $Me_2P - SiMe_2SiMe_2 - PMe_2$ liefern. Der Komplex des letztgenannten Liganden sollte auch durch Reaktion von 1 mit 1,2-Dichlor-1,1,2,2-tetramethyldisilan¹⁰) zugänglich sein.

Dichlordimethylsilan liefert mit 1 weder den Chelatringkomplex 7a noch 7. Das Infrarotspektrum des in organischen Lösungsmitteln praktisch unlöslichen Reaktionsprodukts weist im CO-Valenzschwingungsbereich zahlreiche Banden auf. Im Massen-

²⁾ F. G. Mann und A. J. H. Mercer, J. Chem. Soc., Perkin Trans. 1 1972, 1631; F. G. Mann und M. J. Pragnell, J. Chem. Soc. C 1966, 916.

³⁾ G. T. Morgan und G. R. Davies, Proc. R. Soc. London, Ser. A 110, 523 (1926).

⁴⁾ A. Marquardt, Ber. Dtsch. Chem. Ges. 20, 1517 (1887).

⁵⁾ M. Fild, O. Stelzer und R. Schmutzler, Inorg. Synth. 14, 4 (1973).

⁶⁾ G. Johannsen, O. Stelzer und E. Unger, Chem. Ber. 108, 1259 (1975).

⁷¹ E. Wiberg, M. Van Ghemen und G. Müller-Schiedmayer, Angew. Chem. **75**, 814 (1963); Angew. Chem., Int. Ed. Engl. **2**, 646 (1963); H. Schumann, A. Roth und O. Stelzer, J. Organomet. Chem. **24**, 183 (1970); A. B. Burg und J. F. Nixon, J. Am. Chem. Soc. **86**, 356 (1964).

⁸⁾ M. Baudler, J. Vesper und H. Sandmann, Z. Naturforsch., Teil B 27, 1007 (1972).

⁹⁾ H. Vahrenkamp, Chem. Ber. 105, 3574 (1972); R. B. King und R. H. Reimann, Inorg. Chem. 15, 184 (1976).

¹⁰⁾ G. R. Wilson und A. G. Smith, J. Org. Chem. 26, 557 (1961); M. Kumada, M. Yamaguchi, Y. Yamamoto, J. Nakajima und K. Shina, ebenda 21, 1264 (1956).

spektrum konnten keine molybdänhaltigen Fragmente beobachtet werden. Es zeigt Peaks, die auf das Vorliegen von Polysilanen $(SiMe_2)_n$ und $Me(SiMe_2)_nMe^{11}$ (n = 5-10) schließen lassen. 7 läßt sich jedoch in quantitativer Ausbeute durch Reaktion von 1 mit dem Disilan Me₂ClSi-SiClMe₂ darstellen.

Viergliedrige Chelatkomplexe (8, 9) entstehen, wenn 1 mit Bis(cyclopentadienyl)titandichlorid¹²⁾ bzw. -zirconiumdichlorid¹³⁾ umgesetzt wird.

Die in den Komplexen 8 und 9 vorliegenden Liganden $Me_2P - E^{IVb}Cp_2 - PMe_2$ sind in freiem Zustand unbekannt. In diesem Zusammenhang ist das von *Ellermann* und *Poersch*¹⁴⁾ dargestellte Bis(cyclopentadienyl)zirconiumphosphid $Cp_2Zr(PhPCH_2)_2$ -C(CH₂PPh)₂ZrCp₂ zu erwähnen, dessen Stabilität wohl in erster Linie auf den Chelateffekt und die sterische Abschirmung der Phosphoratome durch die Phenylgruppen zurückzuführen ist.

Reaktion von Lithiumorganophosphiden LiPR₂ mit Bis(cyclopentadienyl)titan- bzw. -zirconiumdichlorid liefert diamagnetische Ti^{III}- bzw. Zr^{III}-Verbindungen $[E^{III}(R_2P)Cp_2]_2$ mit Metall-Metall-Bindungen¹⁵⁾. Mit überschüssigem Diorganophosphid wird die Bildung paramagnetischer Spezies wie Cp₂Ti^{III}(PR₂) und $[Ti^{III}(R_2P)_2Cp_2]^-$ (R = Me, Ph) beobachtet¹⁶⁾. Dialkylaminotitan(IV)-halogenide, z.B. Ti(R'₂N)₃Br, regieren mit organosubstituierten Phosphiden R₂PLi oder R₂PNa unter Abspaltung von Alkalimetallhalogenid und Bildung von Verbindungen des Typs (R'₂N)₃TiPR₂ (R, R' = Alkyl)¹⁷⁾.

¹¹⁾ V. Bazant, J. Hetflejs, V. Chvalovsky, J. Joklik, O. Kruchua, J. Rathousky und J. Schraml, Handbook of Organosilicon Compounds, Herausg. V. Bazant, V. Chvalovsky und J. Rathousky, Bd. 4, S. 873 ff, Marcel Dekker Inc., New York 1973.

¹²⁾ L. Summers, R. Uloth und A. Holmes, J. Am. Chem. Soc. 77, 3604 (1955).

¹³⁾ E. Samuel und R. Setton, C. R. Acad. Sci., Ser. C 254, 308 (1962).

¹⁴⁾ J. Ellermann und F. Poersch, Angew. Chem. **79**, 380 (1967); Angew. Chem., Int. Ed. Engl. **6**, 355 (1967).

¹⁵⁾ K. Issleib und H. Häckert, Z. Naturforsch., Teil B 21, 519 (1966).

¹⁶⁾ J. G. Kenworthy, J. Myatt und P. F. Todd, Chem. Commun. 1969, 263.

¹⁷⁾ H. Bürger und H. J. Neese, Inorg. Nucl. Chem. Lett. 6, 299 (1970).

2. Spektren der Verbindungen 2-9

Das ¹*H-NMR-Spektrum* von 2 zeigt, wie bereits berichtet ¹), ein kompliziertes Multiplett für alle Protonen der PMe₂-Einheiten und ein Quartett höherer Ordnung für die PMe-Gruppen (Abb. 1a). ³¹P-Entkopplungsexperimente führen zu einer starken Vereinfachung des ¹*H-NMR-Spektrums*. Wird die Resonanzfrequenz der Phosphorkerne P_a/P_d eingestrahlt, so erhält man zwei Tripletts für die PMe₂-Protonen, ein weiteres für die PMe-Protonen. Bestrahlung der Probe mit der Resonanzfrequenz von P_b/P_c ergibt jeweils Dubletts anstelle der Tripletts (Abb. 1b, c).

Abb. 1. 100-MHz-¹H-NMR-Spektrum von 2 gelöst in Dichlormethan a) 100-MHz-¹H-NMR, b) 100-MHz-¹H-{ ${}^{31}P_{a,d}$ }-NMR, c) 100-MHz-¹H-{ ${}^{31}P_{b,c}$ }-NMR

Abb. 2. ¹H-NMR-Spektrum von 4 gelöst in Dichlormethan a) nicht entkoppelt, b) ³¹P-heterospinentkoppelt

Ein dieser Situation entsprechendes Bild zeigt das ¹H-NMR-Spektrum der Verbindung 4 (Abb. 2a). Das ³¹P-heterospinentkoppelte ¹H-NMR-Spektrum weist zwei Singuletts für die PMe₂-Einheiten und je eines für die E^vMe-Gruppierungen auf (Abb. 2b). Entsprechendes gilt auch für die ¹H-NMR-Spektren von 3 und 5.

6 zeigt im ¹H-NMR-Spektrum für die Protonen der PMe₂-Gruppen ein Dublett und ein Triplett höherer Ordnung, während man für die *tert*-Butylgruppe ein Dublett beobachtet.

In allen Verbindungen sind die ¹H-NMR-Spektren täuschend einfach¹⁸⁾. Die ¹H-NMR-Spektren von 3-5, 7-9 und die selektiv ³¹P-entkoppelten ¹H-NMR-Spektren von 2 stellen $X_nAA'X'_n$ -Spinsysteme dar. Die Analyse dieser und verwandter Spinsysteme

¹⁸⁾ R. K. Harris, Can. J. Chem. 42, 2275 (1964); G. Hägele und R. K. Harris, Ber. Bunsenges. Phys. Chem. 76, 910 (1972).

wurde von Harris und Hägele¹⁸) beschrieben. Danach können nur die Summen (N) der verschiedenen Kopplungskonstanten J_{AX} aus den Linienabständen der oben erwähnten Dubletts und Tripletts erhalten werden. Diese sind zusammen mit den chemischen Verschiebungen $\delta_{\rm H}$ und $\delta_{\rm P}$ in Tab. 1 aufgenommen.

	¹ H-NM	IR	³¹ P-	NMR
	δ _н [ppm]	N _{рн} [Hz]	δ _P [ppm]	<i>"Ј</i> _{РР} [Нz]
Mo(CO) ₄ -				
$(Me_2PH)_2^{(1)}$	$1.55 (PMe_2)$	6.3	+ 46.8	
	5.10 (PH)	308 (¹ J _{РН})		
		8.0 (³ J _{PH})		
		26 (²J _{рр})		
2 ¹⁾	1.61 (PMe ₂)	a)	$-56.6 (P_{a,d})$	196.6 (¹ J _{Ра} р _ь)
	1.71 (PMe ₂)	a)	$+23.6 (P_{b,c})$	$3.7 (^2 J_{P_a P_c})$
	0.83 (PMe)	9.5 ^{b)}		$-4.6 ({}^{3}J_{P_{s}P_{d}})$
				$+297.0({}^{1}J_{P_{b}P_{c}})$
3 ¹⁾	1.69 (PMe ₂)	7.0	- 56.0	
	$1.81 (PMe_2)$	7.5		
	0.89 (AsMe)	8.6		
4	1.80 (PMe ₂)	10.0	- 49.5	
	1.95 (PMe ₂)	10.5		
	0.80 (SbMe)	7.0		
5	2.10 (PMe ₂)	5.9	-1.9	
	1.70 (PMe ₂)	5.5		
	1.23 (BiMe)	5.4		
6	1.85 (PMe ₂)		$-47.7 (P_{a,c})$	220.8 $({}^{1}J_{P_{1}P_{2}})$
	1.30 (PBu ^t)	13.8	$+23.7 (P_{\rm b})$	
7	1.42 (PMe ₂)	6.8	+70.6	
	0.35 (SiMe ₂)	3.5		
8	1.75 (PMe ₂)	9.0	- 84.2	
	4.72 (C ₅ H ₅)	4.3		
9	$1.78 (PMe_2)$	7.8	- 109.3	
-	5.10 (C+H+)	2.6		

Tab. 1. ¹H- und ³¹P-NMR-Daten der Komplexe 2-9 und von *cis*-Mo(CO)₄(Me₂PH)₂ (Lösungsmittel Dichlormethan)

*) Siehe Abb. 1.

^{b)} Abstand der Quartettlinien.

Die Ergebnisse der NMR-spektroskopischen Untersuchung bestätigen die Ringstrukturen für 2-9 und die Nicht-Äquivalenz der PMe₂-Methylgruppen in den Verbindungen 2-6.

Für die PMe₂-Gruppen in den Verbindungen 7–9 erhält man jeweils nur ein Dublett höherer Ordnung im ¹H-NMR-Spektrum, das bei ³¹P-Heterospinentkopplung in ein Singulett übergeht. Die symmetrische Substitution an den Brückengliedern Me₂Si– SiMe₂ TiCp₂ bzw. ZrCp₂ und die offensichtlich planare Anordnung der die Chelatringe von 7–9 konstituierenden Atome bedingt die chemische Äquivalenz der Methylgruppen der PMe₂-Einheiten. Die Me₂Si–SiMe₂-Gruppe in 7 weist im ¹H-NMR-Spektrum ein Dublett auf, die Cp-Gruppen in 8 und 9 zeigen jeweils ein Triplett. ³¹P-Heterospinentkopplung liefert für die Brückenglieder Me2Si-SiMe2 und TiCp2 bzw. ZrCp2 Singuletts.

Die Röntgenstrukturanalyse der Verbindungen 2¹⁹, 3²⁰, 6²¹ bestätigt die aus den 13 C-NMR-Spektren von 2 und 3 sowie den 1 H-{ 31 P}-NMR-Spektren von 2 und 6 abgeleiteten Ergebnisse.

2 und 3 weisen im ¹³C-NMR-Spektrum für die C-Atome der PMe₂-Einheiten je zwei Multipletts ($\delta = 21.62$ und 17.66 für 2, 22.14 und 18.65 für 3, interner Standard Tetramethylsilan) auf. Für die Methylgruppen der PMe-PMe-Brücke in 2 erhält man ein Quartett bei $\delta = 4.58$, 3 weist eine Resonanz für AsMe-AsMe bei 2.10 auf.

Das ${}^{31}P{}^{1}H{}$ -NMR-Spektrum von 2 stellt ein Beispiel für Spinsysteme des Typs XAA'X'²² (X = $P_{h,c}$, A = $P_{a,d}$) dar. Die Analyse dieses Spektrums mit Hilfe des Programms LAOCOON III²³⁾ ergab mit den in Tab. 1 aufgeführten Werten für die Kopplungskonstanten J_{PP} und chemischen Verschiebungen eine gute Übereinstimmung von experimentellen und berechneten Linienpositionen und -intensitäten.

Die Zunahme von ${}^{1}J_{PP}$ um etwa 100 Hz beim Übergang von der endständigen zur mittelständigen P-P-Bindung des Tetraphosphinliganden $Me_2P-PMe-PMe-PMe_2$ in 2 wird von einer Abnahme des P-P-Bindungsabstandes von 2.200 auf 2.142 Å begleitet ¹⁹). ${}^{1}J_{PP}$ liegt mit 297 Hz im Bereich der für Pentamethylcyclopentaphosphin, (MeP)₅, gefundenen Werte²⁴⁾. Partielle Analyse und Integration des ³¹P-{¹H}-NMR-Spektrums von 6 zeigt das Vorliegen eines A₂M-Spinsystems²⁵⁾ mit ${}^{1}J_{PP} = 220.8$ Hz an.

In den IR-Spektren liegen die CO-Valenzschwingungsfrequenzen der Komplexe in einem relativ engen Bereich. In einigen Fällen (2, 6, 7, 9) werden vier Banden $(2A_1, B_1, B_2)^{26}$ beobachtet. 3, 4, 5 und 8 zeigen nur drei Banden. Die Komplexe 7-9 weisen um ca. 10 cm⁻¹ niedrigere CO-Valenzschwingungsfrequenzen im Vergleich zu den anderen Verbindungen auf (Tab. 2).

Die Substitution von Wasserstoff in der Ausgangsverbindung cis-Mo(CO)₄(Me₂PH)₂ durch weniger elektronegative Substituenten, wie z.B. Me₂Si-SiMe₂, Cp₂Ti, Cp₂Zr, bedingt ein Anwachsen des σ -Donatorvermögens²⁷⁾ und eine Abnahme der π -Acceptoreigenschaften²⁷) der Phosphinliganden. Beide Effekte wirken gleichsinnig und erniedrigen die CO-Valenzschwingungsfrequenzen.

Die Massenspektren weisen alle Peaks der jeweiligen Molekül-Ionen M⁺ auf. Die anhand der Zusammensetzung der Komplexe errechnete Isotopenhäufigkeitsverteilung

- ²⁰⁾ W. S. Sheldrick, Acta Crystallogr., Sect. B 31, 1789 (1975).
- ²¹ W. S. Sheldrick, Acta Crystallogr., Sect. B 32, 308 (1976).
 ²² J. W. Emsley, J. Feeney und L. H. Sutcliffe in High Resolution Nuclear Magnetic Resonance Spectroscopy, Bd. 1, S. 280, Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig 1965.
- ²³⁾ C. W. Haigh in Annual Reports on NMR-Spectroscopy, Bd. 4, S. 346, Academic Press, London, New York 1971.
- ²⁴⁾ J. P. Albrand und J. B. Robert, J. Chem. Soc., Chem. Commun. 1974, 644; J. P. Albrand, D. Gagnaire und J. B. Robert, J. Am. Chem. Soc. 95, 6498 (1973).
- ²⁵⁾ R. J. Abraham und H. J. Bernstein, Can. J. Chem. 39, 216 (1961).
- ²⁶) D. M. Adams, Metal Ligand and Related Vibrations, S. 130, Edward Arnold Ltd., London 1967.
- ²⁷⁾ W.A.G. Graham, Inorg. Chem. 7, 315 (1968); M.F. Lappert, B. Pedley, B. T. Wilkins, O. Stelzer und E. Unger, J. Chem. Soc., Dalton Trans. 1975, 1207; O. Stelzer und E. Unger, Chem. Ber. 108, 1246 (1975).

¹⁹⁾ W. S. Sheldrick, Chem. Ber. 108, 2242 (1975).

$cis-Mo(CO)_4(Me_2PH)_2^{(1)}$	2024	1931	1912	1909
2 ¹⁾	2021	1933	1914	1908
31)	2021	1932	1910	
4	2022	1928	1 909	
5	2021	1929	1910	
6	2023	1934	1915	1908
7	2012	1924	1903	1897
8	2011	1928	1900	
9	2013	1928, 1925	1905	1 900

Tab. 2. CO-Valenzschwingungsfrequenzen der Komplexe 2-9 und von cis-Mo(CO)₄(Me₂PH)₂ in cm⁻¹ (in n-Hexanlösung)

stimmt in allen Fällen hervorragend mit der experimentell beobachteten überein. Das Fragmentierungsmuster läßt die sukzessive Abspaltung von vier CO-Gruppen aus dem Molekül-Ion erkennen.

Im Falle des 1,2-Bis(dimethylphosphino)-1,2-dimethyldibismutin-Komplexes 5 erfolgt die Eliminierung von vier CO-Gruppen auch aus einem Fragment-Ion (M⁺ – 15). Ein weiteres Fragment wird bei m/e = 556 beobachtet, das formal aus M⁺ durch Verlust einer BiMe-Einheit entstanden ist. Ausgehend von m/e = 556 ([(CO)₄-Mo(Me₂PBiMePMe₂)]⁺) erfolgt erneute Abspaltung von 15 bzw. 28 Masseneinheiten. Weitere charakteristische Fragmente werden bei m/e = 418 (Bi⁺) und 209 (Bi⁺) gefunden. Das Auftreten des Molekül-Ions von Trimethylbismutin, BiMe₃ (m/e = 254), und seiner Fragmente läßt sich durch eine Methylgruppenwanderung unter den Bedingungen der Aufnahme des Massenspektrums erklären.

Der Deutschen Forschungsgemeinschaft gilt unser Dank für die Gewährung einer Sachbeihilfe, dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Herrn Dr. H. Harnisch, Hoechst AG, Herrn Dr. G. Wunsch, BASF AG, Herrn Dr. R. Schliebs, Bayer AG, sowie Herrn Dr. H. Habel, Metallgesellschaft AG, Hans Heinrich Hütte, Langelsheim (Harz), danken wir für die kostenlose Überlassung von Chemikalien. Herrn Dr. D. Lincoln gilt unser Dank für die Hilfe bei der Analyse der NMR-Spektren, Herrn Dr. M. Schiebel für die Aufnahme und Interpretation der Massenspektren. Herrn Prof. Dr. R. Schmutzler sei für sein Interesse an dieser Arbeit gedankt.

Experimenteller Teil

Allgemeine Arbeitsbedingungen und Geräte s. Lit.¹⁾. – Molmassen: massenspektroskopisch, bezogen auf ⁹⁸Mo. – ¹H- und ³¹P-NMR-Spektren: JEOL C 60 HL (60 bzw. 24.3 MHz) oder Varian XL 100 (100 bzw. 40.5 MHz). ¹³C-NMR-Spektren: Varian CFT 20 (20 MHz) bzw. XL 100 (25.16 MHz). Standard für ¹H- und ¹³C-NMR TMS intern, für ³¹P-NMR externe 85 proz. Phosphorsäure.

Allgemeine Arbeitsvorschrift zur Darstellung der Komplexe 4-9: Je 10.0 mmol 1 (dargestellt durch Umsetzen von Mo(CO)₄(Me₂PH)₂¹⁾ mit äquivalenten Mengen Butyllithium oder Methyllithium) wurden bei -70° C mit äquivalenten Mengen (oder geringem Überschuß) der Dihalogenide (gelöst bzw. suspendiert in 15 ml Diethylether) versetzt. Nach ca. 2 h Rühren bei -70° C ließ man im Verlauf von 2-3 h auf Raumtemp. erwärmen und rührte bei dieser Temp. noch 4-5 h. Nach Abziehen des Lösungsmittels und der flüchtigen Anteile i. Vak. wurde der Rückstand in Dichlormethan aufgenommen, und unlösliche Anteile wurden abzentrifugiert. Aus dem nach Einengen des Zentrifugats verbleibenden Rückstand ließen sich die Verbindungen 4-9 entweder dünnschichtchromatographisch (PSC-Kieselgelplatten der Fa. Merck, Laufmittel Pentan/ Dichlormethan-Gemische) oder durch mehrmaliges Umkristallisieren in reiner Form gewinnen. Die in Tab. 3 angegebenen Ausbeuten beziehen sich auf analytisch und spektroskopisch reine Produkte.

	Ansatz ^{a)}	Aufarbeitung (Verhältnis Pentan/CH ₂ Cl ₂)	Ausb. (Farbe der Kristalle)	
4	3.18 g (10.7 mmol)	Dünnschichtchromatographie	1.2 g (20%)	
	MeSbBr ₂ ³⁾	(1:3)	(orangefarben)	
5	3.15 g (10.7 mmol) MeBiCl ₂ ⁴⁾	Dünnschichtchromatographie (1:3)	0.225 g (ca. 3%) (orangerot)	
6	1.68 g (10.6 mmol) Bu ^t PCl ₂ ⁵⁾	Dünnschichtchromatographie (1:3)	0.15 g (ca. 4%) (gelblich-weiß)	
7	1.87 g (10.0 mmol)	Umkristallisation	4.03 g (90%)	
	Me ₂ ClSi – SiClMe ₂ ¹⁰⁾	aus CH ₂ Cl ₂ /n-Pentan	(gelblich-weiß)	
8	2.63 g (10.6 mmol)	Umkristallisation	1.89 g (37%)	
	Cp ₂ TiCl ₂ ¹²⁾	aus CH ₂ Cl ₂ /n-Hexan	(tiefrot)	
9	2.92 g (10.0 mmol)	Umkristallisation	3.0 g (54%)	
	Cp ₂ ZrCl ₂ ¹³⁾	aus CH2Cl2/n-Hexan	(gelb)	

Tab. 3. Ansätze, Ausbeuten und Eigenschaften der Komplexe 4-9

^{a)} Es wurden jeweils 10.0 mmol 1 eingesetzt.

cis-Tetracarbonyl[1,2-bis(dimethylphosphino)-1,2-dimethyldistibin-P, P']molybdän(0) (4)

 $\begin{array}{cccc} C_{10}H_{18}MoO_4P_2Sb_2 \ (603.6) & \text{Ber.} \ C \ 19.90 \ H \ 3.01 \ P \ 10.26 \\ & \text{Gef.} \ C \ 20.02 \ H \ 3.03 \ P \ 10.38 & \text{Molmasse} \ 606 \end{array}$

cis-Tetracarbonyl [1,2-bis (dimethylphosphino)-1,2-dimethyldibismutin-P, P' /molybdän(U) (5): MS: m/e (%) = 780 (52, M⁺), 765 (5, - CH₃), 752 (7, - CO), 737 (25, - CH₃, - CO), 709 (12, - CH₃, - 2CO), 694 (4, - 2CH₃, - 2CO), 681 (28, - CH₃, - 3CO), 666 (9, - 2CH₃, - 3CO), 653 (53, - CH₃, - 4CO), 556 (38, - BiMe), 528 (22, - BiMe, - CO), 513 (22, - BiMe, - CO, - CH₃), 500 (11, - BiMe, - 2CO), 485 (22, - BiMe, - 2CO, - CH₃), 472 (13, - BiMe, - 3CO), 457 (17, - BiMe, - 3CO, - CH₃), 442 (27, - BiMe, - 3CO, - 2CH₃), 418 (24, Bi₂), 254 (28, BiMe₃), 239 (48, BiMe₂), 224 (48, BiMe), 209 (100, Bi).

 $C_{10}H_{18}Bi_2MoO_4P_2$ (778.1) Ber. C 15.44 H 2.33 P 7.96

Gef. C 15.82 H 2.65 P 7.96 Molmasse 780

 $cis-(2-tert-Butyl-1,1,3,3-tetramethyltriphosphin-P^1,P^3)$ tetracarbonylmolybdän(0) (6)

 $C_{12}H_{21}MoO_4P_3$ (418.2) Ber. C 34.47 H 5.06 P 22.22

Gef. C 34.54 H 5.02 P 21.90 Molmasse 420

cis-Tetracarbonyl[1,2-bis(dimethylphosphino)-1,1,2,2-tetramethyldisilan-P,P']molybdän(0) (7)

 $C_{12}H_{24}MoO_4P_2Si_2$ (446.4) Ber. C 32.28 H 5.42 P 13.88

Gef. C 32.87 H 5.26 P 13.81 Molmasse 448

cis-Tetracarbonyl[bis(η^5 -cyclopentadienyl)bis(dimethylphosphino)titan-P,P']molybdän(0) (8)

C₁₈H₂₂MoO₄P₂Ti (508.2) Ber. C 42.55 H 4.36 P 12.19

Gef. C 42.18 H 4.48 P 12.14 Molmasse 510

cis-Tetracarbonyl[bis(η⁵-cyclopentadienyl)bis(dimethylphosphino)zirconium-P, P']molybdän(0) (9)

 $C_{18}H_{22}MoO_4P_2Zr$ (551.5) Ber. C 39.20 H 4.02 P 11.23

Gef. C 38.53 H 4.03 P 11.81 Molmasse 552

[545/76]